Parallel Multi-View Rendering
on Multi-Core Processor Systems

Jan Ohlenburg, Wolfgang Broll

Collaborative Virtual and Augmented Environments Department

Fraunhofer FIT, Germany

Rendering Parallel Views

* dual-core and multi-core processing
systems have now become a standard

» multi-threading rendering takes
advantage of this trend

* bad multi-threading approach will result
in performance loss

while (! isTerminated ())
mutex . lock ();
manager -> notify ();
managerCondition . wait (lock);
render ();
condition . timed_wait (lock , nextFrameTime);
mutex.unlock();

Our approach

« support for a high number of parallel
render threads

Listing 1: Render Thread Loop

« limited only by the capabilities of the computer
* each render thread has own

- camera

- render state

- refresh rate

« resources are shared among the
render threads

- textures
- display lists

while (! isTerminated ())

mutex . lock ();

condition . wait (lock);

for each render process
renderer -> mutex . lock ();

update ();

for each render process
renderer -> mutex . unlock ();
renderer -> notify ();

mutex.unlock();

Framerate 89.91 fps

Framerate 9.60 fps

- vertex buffer objects

Performance issues
* avoid context switches
* synchronize update and render threads
- no rendering may be active while updating

Straight forward approach

* update scene

« start render processes

« wait for next frame

» same refresh rate for all render threads

Our solution

» Render thread notifies update thread and performs the
render process after the update (see Listing 1)

* The update thread (see Listing 2) waits for an update
notification...

» ... locks each mutex of all render threads, ie waits until the

last has finished rendering and prevents them from
starting to render

« ... performs the update and unlocks the mutexes and
notifies all render threads

* In case render threads notify the update thread during
the update process, they can share the same update.

Rendering Stereo Pairs
» Quad-buffered stereo is not parallelizable

- left and right view have to be rendered in one thread

» Stereo split view can be used with this approach
- But: left and right view may display different frames
- vertical sync may happen between buffer swaps.

Listing 2: UpdateThread Loop

Example 1:

« three views
- two with maximum refresh rate
- one with 10 fps

* update takes 10 msecs

— optimal update rate of 90 ups (see Example 1)

Example 2:
* same as above
« update takes 1 msec

— update rate of 160 ups, while refresh rate
of views is 120 fps (see Example 2)

Example 3:
* using two views
« one as a top view of the other

Fraunhofer Institut

Angewandte

Informationstechnik

Example 1

Framerate 107.71 fps Framerate 9.61 fps

Example 2

M viewer

Ele View Display Update Window

Framerate 41.92 fps

51,43 ups

Example 3

—

ﬂIl=|er'[;

Parts of the work on Parallel Rendering were performed within the IPerG project.
IPerG is partially funded by the European Commission in FP6
(FP6-2002-1ST-3-004457)

Contact: jan.ohlenburg@fit.fraunhofer.de

