
while (! isTerminated ())
 mutex . lock ();
 manager -> notify ();
 managerCondition . wait ( lock );
 render ();
 condition . timed_wait (lock , nextFrameTime );
 mutex.unlock();

Rendering Parallel Views
• dual-core and multi-core processing 
  systems have now become a standard
• multi-threading rendering takes 
  advantage of this trend
• bad multi-threading approach will result 
  in performance loss

Our approach
• support for a high number of parallel 
  render threads
• limited only by the capabilities of the computer
• each render thread has own
 - camera
 - render state
 - refresh rate
• resources are shared among the 
  render threads
 - textures
 - display lists
 - vertex buffer objects

Performance issues
• avoid context switches
• synchronize update and render threads
 - no rendering may be active while updating

Straight forward approach
• update scene
• start render processes
• wait for next frame
• same refresh rate for all render threads

Example 1:
• three views
 - two with maximum refresh rate
 - one with 10 fps
• update takes 10 msecs

→ optimal update rate of 90 ups (see Example 1)

Example 2:
• same as above
• update takes 1 msec

→ update rate of 160 ups, while refresh rate
     of views is 120 fps (see Example 2)

Example 3:
• using two views
• one as a top view of the other

Rendering Stereo Pairs
• Quad-buffered stereo is not parallelizable
 - left and right view have to be rendered in one thread
• Stereo split view can be used with this approach
 - But: left and right view may display different frames
 - vertical sync may happen between buffer swaps.

Our solution
• Render thread notifies update thread and performs the
  render process after the update (see Listing 1)
• The update thread (see Listing 2) waits for an update
  notification...
• ... locks each mutex of all render threads, ie waits until the
  last has finished rendering and prevents them from 
  starting to render
• ... performs the update and unlocks the mutexes and 
  notifies all render threads
• In case render threads notify the update thread during 
  the update process, they can share the same update.
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Parallel Multi-View Rendering 
on Multi-Core Processor Systems

Listing 1: Render Thread Loop

while (! isTerminated ())
 mutex . lock ();
 condition . wait ( lock );
 for each render process
  renderer -> mutex . lock ();
 update ();
 for each render process
  renderer -> mutex . unlock ();
  renderer -> notify ();
 mutex.unlock();

Listing 2: UpdateThread Loop

Example 1

Example 2

Example 3

Contact: jan.ohlenburg@fit.fraunhofer.de
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