
while (! isTerminated ())
 mutex . lock ();
 manager -> notify ();
 managerCondition . wait (lock);
 render ();
 condition . timed_wait (lock , nextFrameTime);
 mutex.unlock();

Rendering Parallel Views
• dual-core and multi-core processing
 systems have now become a standard
• multi-threading rendering takes
 advantage of this trend
• bad multi-threading approach will result
 in performance loss

Our approach
• support for a high number of parallel
 render threads
• limited only by the capabilities of the computer
• each render thread has own
 - camera
 - render state
 - refresh rate
• resources are shared among the
 render threads
 - textures
 - display lists
 - vertex buffer objects

Performance issues
• avoid context switches
• synchronize update and render threads
 - no rendering may be active while updating

Straight forward approach
• update scene
• start render processes
• wait for next frame
• same refresh rate for all render threads

Example 1:
• three views
 - two with maximum refresh rate
 - one with 10 fps
• update takes 10 msecs

→ optimal update rate of 90 ups (see Example 1)

Example 2:
• same as above
• update takes 1 msec

→ update rate of 160 ups, while refresh rate
 of views is 120 fps (see Example 2)

Example 3:
• using two views
• one as a top view of the other

Rendering Stereo Pairs
• Quad-buffered stereo is not parallelizable
 - left and right view have to be rendered in one thread
• Stereo split view can be used with this approach
 - But: left and right view may display different frames
 - vertical sync may happen between buffer swaps.

Our solution
• Render thread notifies update thread and performs the
 render process after the update (see Listing 1)
• The update thread (see Listing 2) waits for an update
 notification...
• ... locks each mutex of all render threads, ie waits until the
 last has finished rendering and prevents them from
 starting to render
• ... performs the update and unlocks the mutexes and
 notifies all render threads
• In case render threads notify the update thread during
 the update process, they can share the same update.

eTim

cts

ance
avoid

rend
may b

ExEx

um
0 fp

kes

al update rat am

ght forward approach
• up

e for

optimmal update rat

ms the
ec

tion
Render thread notifies update thread and perfor

e takes 1 mse
rforms the

sting
waits

ll re

of 160 ups, while refresh rate
s 12

ende
nde

form
notif

 notific
mutex of alall r

endering and prevents them
ende

rform
notif

Example 3:

uring
upd

o split view

e render thr
s, they can

lleliz
o be

e us
view may

een buffer

Parallel Multi-View Rendering
on Multi-Core Processor Systems

Listing 1: Render Thread Loop

while (! isTerminated ())
 mutex . lock ();
 condition . wait (lock);
 for each render process
 renderer -> mutex . lock ();
 update ();
 for each render process
 renderer -> mutex . unlock ();
 renderer -> notify ();
 mutex.unlock();

Listing 2: UpdateThread Loop

Example 1

Example 2

Example 3

Contact: jan.ohlenburg@fit.fraunhofer.de

Jan Ohlenburg, Wolfgang Broll
Collaborative Virtual and Augmented Environments Department

Fraunhofer FIT, Germany

Parts of the work on Parallel Rendering were performed within the IPerG project.
IPerG is partially funded by the European Commission in FP6

 (FP6-2002-IST-3-004457)

